Dynamic dispatch of cascaded hydro systems

Mike McCoy

Luiz Barroso

mike@psr-inc.com

luiz@psr-inc.com

PSR – http://www.psr-inc.com

Transmission planning in thermal systems

- 1. Select "snapshots" of dispatch scenarios
 - usually peak load condition
- 2. Design network reinforcements "around" those dispatch points
 - eliminate overloads and bus voltage violations
 - no tradeoff between transmission costs and generation redispatch costs; no representation of dynamic evolution

Dynamic simulation may not be necessary

- Transmission investments costs are relatively smaller than generation costs ⇒ no congestions in the "optimal" network
- Economic dispatch is decoupled in time

What about hydro systems?

- transmission investments are higher
 - Hydro plants are more distant
 - Transfer of energy blocks in different directions, depending on hydrology
 - ⇒The "optimal" network may have some congestions
 - Stronger coupling between G&T investment decisions
- economic hydro dispatch has more "degrees of freedom"
 - ⇒ tradeoff between redispatching hydro and postponing transmission investments

Transmission planning in hydro systems may require dynamic dispatch simulation

Hydrothermal scheduling model

cascaded hydro

water balance, spillage, filtration, evaporation, irrigation, "salmon" constraints etc.

inflow uncertainty

 multivariate stochastic inflow models which represent both spatial and time dependence.

thermal plants

 efficiency curves, fuel limits, startup costs, multiple fuels etc

transmission network

 "loop flows", quadratic losses, power flow limits, area exports, security constraints etc.

Time dependence + inflow uncertainty

The number of branches in the decision tree increases exponentially

Traditional approach: stochastic DP

 Backward recursion that minimizes sum of immediate and future costs

 derivatives of ICF and FCF with respect to storage are equal and opposite: water values

Limitation of Traditional SDP

- computational effort increases exponentially with number of reservoirs ("curse of dimensionality")
 - Applications limited to three or four hydro plants

Stochastic Dual DP

 SDDP avoids the curse of dimensionality by creating a piecewise linear FCF

 It becomes possible to simulate systems with hundreds of hydro plants

Example: Brazil

Surface area: 8.5 million sq km

(= continental USA + 1/2 Alaska)

Inst.capacity: 85,000 MW (85% hydro)

The whole country is interconnected by 80,000 km of HV lines

Additional 40,000 km of HV circuits will be added in the next 8 years

Hydro Chains

Typical study

Generation & Transmission

- 120 hydro power plants
- 80 thermal power plants (gas, nuclear, coal, diesel)
- 2,900 buses
- 4,500 circuits

Planning horizon

- 120 months (60 months + 5 "buffer" years)
- 3 load blocks

Inflow model

- Multivariate ARP
- Simulation for 200 inflow scenarios

Results: overloaded circuits

Results: LMPs

Conclusions

- Stochastic Dual DP is an effective technique for the integrated simulation of cascaded hydro systems and transmission networks
 - Tool for transmission planning studies
- Allows analysis of topics of interest to the West Coast:
 - Coordination of "across the border" cascades with different operators
 - Impact of LMPs and congestion payments on hydro revenues